knitr::opts_chunk$set(cache = TRUE, dev = c("png", "pdf"))
library(ClustOfVar)
library(vegan)
library(eucs)
library(lme4)
Clustering Grampians Plots
Distance matrix of Grampians plots
dist_grampians <- vegdist(wide_grampians[-1:-5], "raup", TRUE)
Cluster analysis of Grampians commmunites
hclust_grampians <- hclust(dist_grampians)
Split plots into 20 clusters
clusters_grampians <- cutree(hclust_grampians, ncol(wide_grampians) - 5)
Calculate F-statisic (analog) for each environment variable
Extract environmental data for the Grampians
covariates <- covariates_grampians[-1:-5]
For each env variable calculate the ratio of between and within cluster variance
fratios <- sapply(
covariates,
function(x) {
out <- VarCorr(
lmer(y ~ 1 + 1 | clusters_grampians, data = data.frame(y = x))
)
out$clusters_grampians[[1]] / attr(out, "sc")^2
}
)
colnames(covariates) <- paste(colnames(covariates), round(fratios, 1))
Clustering environmental variables
Cluster the environmental variables based on their correlations (groups will be more correlated).
clusters_covariates <- hclustvar(covariates)
Plot dendrogram
par(mar = c(4, 0, 0, 19), ps = 8)
plot(as.dendrogram(clusters_covariates), horiz = TRUE)

IycgLS0tCiMnIHRpdGxlOiAiU2VsZWN0aW5nIGNvdmFyaWF0ZXMgZm9yIEdyYW1waWFucyIKIycgYXV0aG9yOiAiV2lsbGlhbSBLLiBNb3JyaXMiCiMnIGRhdGU6ICJgciBTeXMuRGF0ZSgpYCIKIycgb3V0cHV0OgojJyAgIHJtYXJrZG93bjo6aHRtbF9ub3RlYm9vazoKIycgICAgIGNvZGVfZm9sZGluZzogaGlkZQojJyAtLS0KCiMrIHNldHVwLCBtZXNzYWdlPUZBTFNFLCBmaWcuc2hvdz0iaGlkZSIsIHJlc3VsdHM9ImhpZGUiCmtuaXRyOjpvcHRzX2NodW5rJHNldChjYWNoZSA9IFRSVUUsIGRldiA9IGMoInBuZyIsICJwZGYiKSkKbGlicmFyeShDbHVzdE9mVmFyKQpsaWJyYXJ5KHZlZ2FuKQpsaWJyYXJ5KGV1Y3MpCmxpYnJhcnkobG1lNCkKCiMnICMjIENsdXN0ZXJpbmcgR3JhbXBpYW5zIFBsb3RzCiMnIERpc3RhbmNlIG1hdHJpeCBvZiBHcmFtcGlhbnMgcGxvdHMKZGlzdF9ncmFtcGlhbnMgPC0gdmVnZGlzdCh3aWRlX2dyYW1waWFuc1stMTotNV0sICJyYXVwIiwgVFJVRSkKCiMnIENsdXN0ZXIgYW5hbHlzaXMgb2YgR3JhbXBpYW5zIGNvbW1tdW5pdGVzCmhjbHVzdF9ncmFtcGlhbnMgPC0gaGNsdXN0KGRpc3RfZ3JhbXBpYW5zKQoKIycgU3BsaXQgcGxvdHMgaW50byAyMCBjbHVzdGVycwpjbHVzdGVyc19ncmFtcGlhbnMgPC0gY3V0cmVlKGhjbHVzdF9ncmFtcGlhbnMsIG5jb2wod2lkZV9ncmFtcGlhbnMpIC0gNSkKCiMnICMjIENhbGN1bGF0ZSBGLXN0YXRpc2ljIChhbmFsb2cpIGZvciBlYWNoIGVudmlyb25tZW50IHZhcmlhYmxlCiMnIEV4dHJhY3QgZW52aXJvbm1lbnRhbCBkYXRhIGZvciB0aGUgR3JhbXBpYW5zCmNvdmFyaWF0ZXMgPC0gY292YXJpYXRlc19ncmFtcGlhbnNbLTE6LTVdCgojJyBGb3IgZWFjaCBlbnYgdmFyaWFibGUgY2FsY3VsYXRlIHRoZSByYXRpbyBvZiBiZXR3ZWVuIGFuZCB3aXRoaW4gY2x1c3RlcgojJyB2YXJpYW5jZQojK2ZyYXRpbywgd2FybmluZz1GQUxTRQpmcmF0aW9zIDwtIHNhcHBseSgKICBjb3ZhcmlhdGVzLAogIGZ1bmN0aW9uKHgpIHsKICAgIG91dCA8LSBWYXJDb3JyKAogICAgICBsbWVyKHkgfiAxICsgMSB8IGNsdXN0ZXJzX2dyYW1waWFucywgZGF0YSA9IGRhdGEuZnJhbWUoeSA9IHgpKQogICAgKQogICAgb3V0JGNsdXN0ZXJzX2dyYW1waWFuc1tbMV1dIC8gYXR0cihvdXQsICJzYyIpXjIKICB9CikKY29sbmFtZXMoY292YXJpYXRlcykgPC0gcGFzdGUoY29sbmFtZXMoY292YXJpYXRlcyksIHJvdW5kKGZyYXRpb3MsIDEpKQoKIycgIyMgQ2x1c3RlcmluZyBlbnZpcm9ubWVudGFsIHZhcmlhYmxlcwojJyBDbHVzdGVyIHRoZSBlbnZpcm9ubWVudGFsIHZhcmlhYmxlcyBiYXNlZCBvbiB0aGVpciBjb3JyZWxhdGlvbnMKIycgKGdyb3VwcyB3aWxsIGJlIG1vcmUgY29ycmVsYXRlZCkuCmNsdXN0ZXJzX2NvdmFyaWF0ZXMgPC0gaGNsdXN0dmFyKGNvdmFyaWF0ZXMpCgojJyBQbG90IGRlbmRyb2dyYW0KIysgZGVuZHJvZ3JhbSwgZmlnLmhlaWdodD0xMApwYXIobWFyID0gYyg0LCAwLCAwLCAxOSksIHBzID0gOCkKcGxvdChhcy5kZW5kcm9ncmFtKGNsdXN0ZXJzX2NvdmFyaWF0ZXMpLCBob3JpeiA9IFRSVUUpCg==